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Introduction 

Learning Progressions (LPs) reflect increasingly sophisticated ways of thinking about a 
construct [1-3] and therefore can serve as tools for supporting students in attaining deeper 
understanding of the construct over time [1-3]. LPs can help adjust instruction to individual 
learners’ needs therefore supporting the opportunity to learn [4]. But this is only possible if the 
LPs reflect diverse ways of thinking about a construct being measured, and if the LP-aligned 
assessments meaningfully measure this diversity at various levels of sophistication. Further, the 
process of doing science is inherently multi-modal with scientists utilizing drawings and writings 
and other modalities to explain phenomena [5]. Thus, fostering deep science understanding 
requires supporting students in using multiple modalities at various levels of sophistication 
described by an LP when explaining phenomena. Fostering such understanding therefore 
requires timely and cognitively appropriate feedback tailored to the diversity of student thinking 
to be provided to students. To provide such feedback, we first need to evaluate student reasoning 
with respect to LP levels across different modalities. However, evaluating complex student 
reasoning in STEM across different modalities and at different sophistication levels often 
represented by constructed responses (CRs) is time and resource consuming, and requires 
technologically innovative solutions [6]. Artificial Intelligence (AI) technology, such as machine 
learning (ML) has shown promise in tackling this challenge. Specifically, ML  has been used to 
score open-ended modeling tasks (e.g., drawings) [7], and short text-based constructed scientific 
explanations [8], both of which are time-consuming to score. However, aligning both modalities 
to provide cognitively appropriate feedback at various levels of sophistication still remains a 
challenge. This study aims to tackle this challenge of evaluating complex student reasoning in 
STEM according to the levels of previously validated LP and across both modalities. 

We build on a validated NGSS-aligned multi-modal LP reflecting diverse ways of 
modeling and explaining electrostatic phenomena [9-11] and associated assessments. We focus 
on students’ modeling, an essential practice for building a deep science understanding [1]. 
Supporting culturally and linguistically diverse students in building modeling skills provides 
them with an alternative mode of communicating their understanding, essential for equitable 
science assessment [12]. In the current study we demonstrate using previously validated LP to 
guide training of ML algorithms to evaluate LP-aligned scientific models (drawings) and the 
accompanying short text-based explanations  reflecting multi-modal understanding of electrical 
interactions in high school Physical Science. We address the following research question: How 
can a validated  LP guide an ML algorithm training to evaluate LP-aligned multi-modal 
assessments measuring complex cognitive constructs in STEM to support diverse multimodal 
understanding? To answer this RQ we demonstrate how LP guides the design of personalized 
ML-driven formative feedback grounded in the diversity of student thinking on both assessment 
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modes. LP guidance provides a roadmap for grounding the formative feedback in empirically 
based, cognitively appropriate ways of modeling and explaining electrostatic interactions 
grounded in previously validated LP. Such LP-guided ML algorithm training also allows to 
capture diverse ways of student thinking in the context of modeling electrostatic phenomena and 
tailor formative feedback in ways that accounts for and builds on this diversity, reflecting a more 
equitable and constructive approach to ML training for supporting learning [13, 14]. 

 
Theoretical Framework 

We build on the theoretical framework for LP-guided AI training introduced in Kaldaras, 
Haudek & Krajcik [13]. The framework demonstrates using LPs to guide training for a wide 
range of AI algorithms focused on preparing AI to evaluate complex student reasoning at various 
levels of sophistication. The framework's utility has been demonstrated in the context of 
evaluating LP-aligned  constructed responses reflecting stand-along scientific explanations [7], 
scientific models [8] and math-science sensemaking [15].  The current study demonstrates using 
the framework to guide training of ML algorithms to evaluate LP-aligned multi- modal 
assessments combining both scientific models (drawings) and short accompanying explanations. 

The study builds on a validated NGSS-aligned LP that integrates the DCIs (qualitative 
Coulomb’s law relationships and charge transfer), CCC of cause and effect, and the SEPs of 
developing and using models  (M) and constructing explanations of  (E) electrostatic phenomena. 
The LP is shown in Table 1. 
Table 1. NGSS-aligned learning progression for electrical interactions [9-11]. 

Level 3: Scientific models and explanations reflect causal relationships that integrate ideas of 
energy and Coulombic interactions (qualitative, no formula) and charge transfer at the 
atomic-molecular level to explain electrostatic phenomena. 

Level 2: Scientific models and explanations represent causal relationships that use but don’t 
integrate (or inaccurately integrate) ideas of energy and/or Coulombic interactions (qualitative) 
and charge transfer at the macroscopic or partially atomic-molecular level to explain 
electrostatic phenomena. 

Level 1: Scientific models and explanations represent partially causal relationships that use 
ideas of Coulombic interactions (qualitative), charge transfer and/or energy with 
inaccurate/incomplete ideas to explain phenomena. 

Level 0: Scientific models and explanations don’t represent causal relationships and use ideas 
of Coulomb’s lawn(qualitative), charge transfer and/or energy with significantly inaccurate 
and/or incomplete ideas to explain phenomena. 

 
A key step in AI training to evaluate student reasoning lies in designing rubrics that will yield 
high human-machine agreement and allow for meaningful evaluation of the validity of the 
AI-based scores to ensure that the AI algorithms capture the same aspects of student responses as 
a trained human scorer would [14]. While it is possible to design meaningful rubrics for 
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evaluating various tasks using AI without an available LP, this could considerably diminish the 
usefulness of the resulting scores in terms of providing construct-specific, cognitively 
appropriate feedback that will help students develop a deeper understanding of a construct 
beyond the specific assessment items. LPs and LP-aligned assessments, on the other hand, result 
in data (student responses) that can be meaningfully interpreted in terms of what students can do 
based on what they demonstrate in their responses, and what support and feedback they need to 
transition to the next, and subsequent levels of understanding. The information that guides 
development of such feedback is reflected in the LP levels that describe what students know and 
should be able to do at various levels of sophistication [3]. LPs therefore represent an 
overarching roadmap that helps organize and tailor feedback on a wider range of items to help 
students develop a deeper understanding of a construct across contexts and assessment scenarios. 
Such feedback, in turn, could support development of transferable knowledge and skills beyond 
specific learning contexts, which is an ultimate goal of any educational system [1-2]. 
 In the current study we demonstrate how the LP shown in Table 1 helps guide 
development of rubrics that yield rich and meaningful sources of data to help us accurately place 
students on an LP level and determine the types of feedback and support they need to help them 
move up the levels in the context of modeling and explaining electrostatic phenomena. The LP 
shown in Table 1 guides  development of analytic rubrics for both the model (drawing) and the 
written explanation parts of the assessment item. The same rubric is used for human and ML 
evaluations of student responses.  

The process of LP-guided analytic rubric development is shown in Figure 1. Specifically, 
for each LP-aligned assessment task the LP guides development of analytic rubric categories that 
reflect presence or absence of specific ideas that are relevant for capturing student proficiency in 
the construct described by the LP. Presence of the corresponding ideas is scored as 1, while 
absence as a 0. One can design as many analytic rubric categories as needed to capture 
proficiency in a given assessment item. Further, the combinations of “0” and “1”scores for all 
analytic rubric categories reflects the overall level of student response with respect to the LP. 
Each analytic rubric category combination can be mapped to a specific LP level. Each 
combination also reflects specific ideas present or absent in a given response, which allows to 
tailor feedback to student’s specific LP level and the specific information present in student 
response.Furhter, analytic rubric categories can also be developed to capture specific 
inaccuracies or incomplete/vague ideas present in student responses. Capturing those ideas can 
help further personalize and tailor feedback to diverse ways of thinking. The methods section 
demonstrates how this process was used to develop analytic rubrics and evaluate student models 
and explanations for the assessment item used in this study. 
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Figure 1. LP-guided analytic rubric development for human and automatic scoring. 

 
Methods 

Analytic Rubric Development for Modeling and Explanation Modalities 
We begin with a previously developed item (Figure 1) aligned to LP levels 0-2 (Table 1). 

The item focuses on ideas of qualitative Coulombic interactions and charge transfer only, without 
assessing student understanding of energy. The item models interactions between the 
electroscope parts and a charged rod. The analytic rubric allows to identify presence and absence 
of essential components of models and explanations therefore permitting developing LP-aligned, 
feedback tailored to specific student responses for both modalities. The analytic rubric for 
models and explanations is shown in Table 2.  
______________________________________________________________________________ 
 Figure 1. Electroscope modeling item. 

 
Question: What is different about scenario A and Scenario B? Justify your answer. 
______________________________________________________________________________ 
The modeling rubric contained a total of 13 analytic categories, ten of which reflect accurate 
components of models that should be present in student responses (categories 1-10 in Table 2). 
The final LP level assignment reflects student proficiency in developing  a causal model 
explaining the difference between scenario A and B using qualitative Coulomb’s law 
relationships (more charge is associated with larger magnitude of electric force) and charge 
transfer. To do this, we specified the necessary model components, the relationships between 
them and the connection to the phenomenon. Briefly, a complete and accurate model should 
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include point charges on all parts of the electroscope (sphere, hook, leaves) as well as the rod. 
Presence of these model components will indicate student proficiency in using ideas of charge 
transfer to model how neutral objects (electroscope in this case) become charged through contact 
with charged objects (rod in this case). In addition there should be more charge on all parts of the 
model in scenario B compared to A. Finally, student models should show larger repulsive force 
between leaves of the electroscope in scenario B compared to A. Presents of these components 
will indicate student proficiency in using qualitative Coulombic relationships, specifically 
relating the amount of charge on interacting objects to the amount of associated electric force 
between the objects.  
 Further, to tackle variability in responses and ensure that resulting feedback can be 
tailored to the diversity of student thinking, it is important to also capture potential inaccuracies 
in student models. To do this, we looked at multiple student models and identified 3 broad 
categories reflecting inaccurate and/or incomplete ideas which we incorporated into the 
modeling analytic rubric. These categories are described in Table 2 under categories 11-13. 
Briefly, sometimes student models show the same type of charge on some or all parts of the 
model (electroscope sphere, hook, leaves). Category 11 aims to capture this inaccuracy. Further, 
some models show a similar amount of charge on some parts of the electroscope in scenario B 
compared to A, which could indicate that they don’t fully understand that there is more charge 
transferred in B compared to A. Category 12 aims to capture this inaccuracy. Finally, sometimes 
students think that the electroscope in part A is not charged at all, and they don’t show any 
charge on the electroscope in part A. Category 13 aims to capture that inaccuracy. 
 Further, we developed 8  analytic rubric categories for the explanation part of the 
electroscope item (categories 14-21 in Table 2). Specifically, categories 14 -18 aim to capture 
accurate ideas that should be present in student responses. Generally, we expect that students will 
relate the amount of charge transferred from the rod in scenarios A and B to the magnitude of the 
repulsive force between the electroscope leaves in their explanations. Categories 14 and 15 
reflect one component of this causal statement: category 14 captures whether students recognize 
that scenario A has more charge than scenario B, while category 15 captures whether students 
recognize that the magnitude of electric force is stronger in B compared to A. Category 16, on 
the other hand, reflects both of these causal statement capturing that students can relate the 
amount of charge to the resulting magnitude of electric force when comparing scenarios A and 
B. Further, categories 17 and 18 capture presence of other important accurate ideas, like charge 
transfer (category 17) and fundamental property of charges (category 18). Like the modeling 
rubric, we wanted to identify common inaccurate or incomplete ideas in student explanations 
(shown as categories 19-21). Specifically, category 19 captures whether students think that the 
electroscope in part A is not charged at all, which is similar to category 13 for the modeling 
modality. Categories 20 and 21 aim to capture incomplete explanations reflected in students 
describing their observations with no use of disciplinary ideas (category 20) or lack of 
comparison between scenarios (category 21). 
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Table 2. Analytic rubric for the model and explanation component of the electroscope item. 
Category Description 

1 Point charge (either + or – ) on the rod in scenario A 
2 Point charge on the metal ball. The charge must be the same type as shown in 

the rod in scenario A. Alternatively, models can show charge transfer from the 
rod to the ball with arrows, and not explicitly show point charges on the ball 
(there should be charges on the rod)  

3 Point charge on the hook of the electroscope. The charge must be the same 
type as shown on the rod in scenario A. Alternatively, models can show charge 
transfer from the ball to the hook/foil leaves with arrows, and not explicitly 
show point charges on the hook (there should be charges on the ball) 

4 Point Charge on the leaves of the electroscope in scenario A. The charge must 
be the same type as shown in the rod in scenario A. 

5 Clearly indicates repulsive Electric force causes leaves to move, by using arrows 
or force representations and pointing in opposite directions between the leaves 
in scenario A  

6 Point charge on the rod in scenario B. The charge must be the same type as 
shown on the rod in scenario A. There must be more point charges on the rod in 
scenario B than in scenario A. 

7 Point charge on the sphere of the dome in scenario B. The charge must be the 
same type as shown on the sphere of the dome in scenario A. There must be 
more point charges on the sphere in scenario B than in scenario A. Alternatively, 
models can show charge transfer from the rod to the ball with arrows, and not 
explicitly show point charges on the ball  

8 Point charge on the hook of the electroscope in scenario B. The charge must be 
the same type as shown on the hook in scenario A. There must be more point 
charges on the hook in scenario B than in scenario A. Alternatively, models can 
show charge transfer from the ball to the hook with arrows, and not explicitly 
show point charges on the hook 

9 Point Charge on the leaves of the electroscope in scenario B. The charge must 
be the same type as shown in the leaves in scenario A. A. There must be more 
point charges on the leaves in scenario B than in scenario A. 

10 Clearly indicates repulsive Electric force causes leaves to move, by using arrows 
or force representations and pointing in opposite directions between the leaves 
in scenario B.. The repulsive arrows should be bigger or bolder (or both) for 
scenario B than for scenario A.  

11 Model shows both types of charges on one or more part of the electroscope in 
one or both scenarios. This can be ignored if positive and negative charges are 
not accumulated in specific locations. 

12 Similar amount of charge on one or more parts of the electroscope in scenario A 
and B. This category only applies if they show the same type of charge through 
the entire model. 
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13 Either the rod in scenario A is not charged or the whole electroscope are not 
charged in scenario A 

14 States that: 
- rod in scenario B has more charge OR 
- rod in scenario A has less charge OR 
- student can state that scenario A has less charge than Scenario B 

15 States that repulsive electric force or electric field is: 
-stronger  in scenario B than in scenario A 
-weaker in scenario A than in scenario B 

16 Relate the amount of charge to the magnitude of the repulsive electric force in 
both scenarios. States that: 
- Larger amount of charge in scenario B compared to scenario A causes stronger 
repulsive force (or causes the leaves to move apart more) 

- Smaller amount of charge in scenario A compared to scenario B causes weaker 
repulsive force (or causes leaves to move apart less) 

17 States that Rod/parts of the system transfers charge to the foil leaves or any part 
of the electroscope in one or both scenarios. No comparison between scenario 
A and B is necessary for this category 

18 States that similar charges repel 
19 -States that the rod (or any other part of the electroscope) is neutral (not 

charged) in Scenario A but charged in scenario B;  
OR 
-states that the electroscope leaves are neutral in A but charges in B 
OR 
-States that the charged rod is not transferring any charge to the electroscope 
(metal ball, hook, foil leaves) or foil leaves in scenario A 

20 Description of event only (no causality implied or disciplinary idea used) 
21 Does not develop a comparison response including both scenarios explaining 

why foil leaves mover further away in B compared to A 
 
Table 3 describes alignment analytic rubric combinations for modeling and explanation modality 
at each LP level. In this study we evaluate models and explanations separately and provide an LP 
level assignment for a model and an explanation. Therefore, the corresponding potential 
feedback is provided separately for a model and an explanation. 
Table 3. Analytic rubric Categories combinations alignment with LP levels. 

Level 2: models show charges on almost all electroscope parts (rod, sphere, hook, leaves, 
missing on no more than 2 parts is permissible), more charge transferred from the rod to all 
electroscope parts in scenario B, and a greater repulsive force in scenario B (score of “1” in at 
least 8 of total ten categories (categories 1-10), score of “0” in categories 11-13). Explanations 
provide a causal statement relating the difference in the amount of charge on the rod in both 
scenarios to the amount of charge transferred to the foil leaves and the resulting magnitude of 
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the repulsive force (score of “1” for category 16). Additional accurate information is 
permissible (score of “1” in categories 17 and 18), no inaccuracies (score of “0” in categories 
19-21).  

Level 1: models miss more than 2 components (e.g., charge on more than one electroscope 
part, repulsive force indicator etc.) but no more than 4 components (score of “1” in at least 6 of 
total ten categories (categories 1-10)). Explanation only contains one component of the causal 
statement. Inaccuracies in both modalities are permissible (score of “1” on category 14 or 15). 
Inaccuracy categories are permissible for both model (score of “1” on categories 11-13) and 
explanation (score of “1” on categories 19-21). 

Level 0: models show charges on less than 6 components of the model (score of 1 on less than 
6 of the total ten categories (categories 1-10). Explanation is absent or only contains 
inaccuracies (score of “1” on categories 11-13). 

 
Data Sources 
The Electroscope item was administered to 9th-grade students participating in the NGSS-aligned 
curriculum study. Unit 1 focused on ideas related to Coulomb’s law as related to electrical 
interactions. The Electroscope item was administered as part of the Unit 1 pre and post-test and 
student responses from the posttest were used for the analysis reported here.  
 
Human Scoring 
We coded ~200 randomly selected student models and accompanying explanations to ensure that 
the rubrics for both modalities were easy to use and applied to a range of responses. The rubrics 
and the coded responses were then reviewed by the researchers in the group. Clarifications of 
rubric criteria and necessary additions were made to ensure the usability of the rubric. Three 
undergraduates were trained to apply the rubric to student responses. Training was done in 
subsets of several hundred responses and coded independently by coders.  
 
ML Model Training and Testing 
Modeling Modality 

We used supervised ML, specifically convolutional neural network analysis approach 
with Res-Net18 architecture as feature extraction network [16]. The training data set contained 
884 responses (73 % of the overall data set) and the testing set contained 327 images (27% of the 
dataset). During training, we use the pretrained ResNet-18 (Residual Network) architecture, 
modifying its final fully connected layer to deliver binary output for our classification needs. The 
ResNet-18 architecture, noted for its deep residual learning framework, was employed as our 
feature extraction network [16]. This network, with its depth of layers and residual connections, 
is particularly adept at learning from small datasets, which often pose challenges for deep 
learning models due to the risk of overfitting [16]. To accommodate the input dimensionality and 
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maintain consistency with the ResNet architecture, we set d = 512 (feature dimensionality) and 
resized all images to W = H = 224 (pixels). 

Our model was implemented in PyTorch, benefitting from its flexible programming 
environment and efficient computational graph dynamics [17]. Optimization during training was 
conducted using the Adam optimizer, with a learning rate of 1e - 4, balancing the advantages of 
adaptive gradient methods with the need for precision in the weight update process [18]. An 
NVIDIA GeForce GTX 1080Ti graphics card expedited the training process, enabling the 
efficient optimization of the model. Throughout the cross-validation process, we systematically 
assessed and saved the best-performing models according to validation metrics, opting for F1 
score or accuracy based on the dataset's balance.  

We tested multiple data augmentation approaches to ensure best human-machine 
agreement for training and testing stages. A detailed discussion of performance for various 
augmentation approaches has been recently published [19]. In this paper we report results of 
human-machine agreement achieved using the SMOTE augmentation approach which yielded 
the highest agreement. 
Explanation Modality 

We used a supervised deep learning approach utilizing the Bidirectional Encoder 
Representations from Transformers (BERT) model to classify responses across categories 14 to 
21. Specifically, we used the bert-base-uncased model as the foundation for our feature 
extraction network. The dataset consisted of textual justifications mapped to multiple categories, 
with missing values in both the justification and categorical fields handled by appropriate 
imputation strategies. The training dataset contained an 80-20 split for training and testing 
purposes on the 1060 students response. 

During preprocessing, textual inputs were tokenized using the BERT tokenizer with a 
maximum sequence length of 128 tokens to ensure consistency across input representations. The 
training pipeline involved encoding textual data, which was subsequently passed through the 
BERT model. The textual representations were extracted through the pooler_output layer of 
BERT, which serves as an encoder for the texts. The final classification layers consisted of 
additional dense layers with ReLU activation, followed by a sigmoid-activated output layer to 
accommodate multi-label classification across the eight categories. 

The model was implemented using TensorFlow and trained with the Adam optimizer, 
adopting a learning rate of 2e-5 to balance convergence speed and generalization. To mitigate 
overfitting, we introduced dropout layers with a 30% dropout rate and utilized early stopping 
based on validation loss, ensuring that the optimal model was retained. The model was trained 
for up to 10 epochs with a batch size of 16. 

Results 
Human Scoring 
The codes coded models and explanations separately. Results from independent coding on 
subsets were checked for IRR (Krippendorff, 2004). We used a threshold of Krippendorff’s alpha 
greater than 0.8 between human coders for each analytic category [20]. We then checked for 
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human IRR. Categories that showed <0.8 Krippendorf’s alpha between coders were discussed by 
the coders until agreed upon and the rubric was updated. A total of 1211 modeling and 
explanation responses from students collected in 9th grade Physical Science classroom were 
scored by trained human scorers. This data set is subsequently used to train the ML model. 
ML Scoring 

Precision, recall, and F1 score are key evaluation metrics used in classification tasks to 
measure the performance of a model. Precision refers to the proportion of correctly predicted 
positive instances out of all instances predicted as positive. It indicates how often the model's 
positive predictions are actually correct. Recall (also known as sensitivity) measures the 
proportion of actual positive instances that the model correctly identifies, showing how well the 
model captures all relevant instances. F1 score is the harmonic mean of precision and recall, 
providing a balanced measure that accounts for both false positives and false negatives. See 
[21,22]. We used these measures to evaluate ML model performance for modeling and 
explanation modalities as discussed further. 
ML Scoring for Models 

Table 5 shows the final human-machine agreement for each scoring category for the 
training and testing stages. As shown in Table 5, human-machine agreement for all categories for 
the testing stage is above 90% accuracy, reflecting very high agreement. Other measures such as 
precision, recall and  F-1 score are also above 0.9 indicating very good model performance. 
Further, accuracy for the testing stage is also above 90% accuracy, reflecting very high 
agreement. Other measures such as precision, recall and  F-1 score are also above 0.8 for most 
categories indicating good model performance. We note that some of the categories with the 
lowest performance metrics such as F-1 score for the training stage are rubric categories 
associated with inaccuracies - categories 11-13. Notice also that these categories have a small 
overall number of positive cases available in the dataset as shown in Table 6. Similarly, a 
somewhat lower performing category (but still within acceptable range)-category 7 also has a 
lower number of positive cases in the dataset as shown in Table 6. Overall, this data suggests that 
the supervised ML approach accurately detected the model components and critical relationships 
within the model that were outlined in the rubric for training and testing stages. 
Table 5. Human-Machine agreement using CNN algorithm performance with SMOTE 
augmentation for the modeling modality. 

  
Category 

Training Stage (cross validation)   Testing Stage  
accuracy 95% CI precisi

on 
reca

ll 
F1 

score 
  accuracy 95%CI precisi

on 
recall F1 

score 
C1 0.94 (0.93, 0.94) 0.94 0.94 0.94   0.94 (0.89, 0.99) 0.94 0.92 0.93 
C2 0.96 (0.95, 0.97) 0.96 0.96 0.96   0.97 (0.93, 1.01) 0.95 0.93 0.94 
C3 0.97 (0.96, 0.97) 0.97 0.97 0.97   0.97 (0.93, 1.00) 0.90 0.94 0.93 
C4 0.95 (0.94, 0.95) 0.95 0.95 0.95   0.93 (0.89, 0.98) 0.90 0.90 0.90 
C5 0.96 (0.95, 0.96) 0.95 0.95 0.95   0.96 (0.91, 1.00) 0.94 0.94 0.94 
C6 0.91 (0.90, 0.92) 0.91 0.91 0.91   0.91 (0.87, 0.96) 0.90 0.84 0.87 
C7 0.95 (0.94, 0.95) 0.95 0.95 0.95   0.94 (0.91, 0.97) 0.97 0.64 0.71 
C8 0.95 (0.94, 0.96) 0.96 0.95 0.95   0.94 (0.90, 0.96) 0.79 0.86 0.82 
C9 0.94 (0.93, 0.95) 0.94 0.94 0.94   0.93 (0.89, 0.97) 0.90 0.80 0.84 
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C10 0.95 (0,94, 0.96) 0.95 0.95 0.95   0.95 (0.91, 1.00) 0.95 0.90 0.92 
C11 0.93 (0.92, 0.93) 0.93 0.93 0.92   0.91 (0.88, 0.94) 0.65 0.55 0.56 
C12 0.92 (0.91, 0.93) 0.93 0.92 0.92   0.91 (0.87, 0.94) 0.73 0.65 0.68 
C13 0.96 (0.95, 0.96) 0.96 0.96 0.96   0.92 (0.89, 0.96) 0.83 0.72 0.76 

              
Table 6. Percent of positive cases for each scoring category for modeling modality. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ML Scoring for Explanations 
Performance evaluation across categories revealed strong human-machine agreement, 

with validation accuracy exceeding 90% for most categories, as shown in Table 7. The highest 
performance was observed in categories 15 and 18, where precision reached 91.30% and 100%, 
respectively. However, certain categories, such as 17 and 19, exhibited lower F1 scores due to 
class imbalance as shown in Table 8 and inherent challenges in label consistency. Despite these 
variations, the overall performance suggests that the BERT-based approach effectively captured 
key relationships in the data and aligned well with human scoring patterns. These findings 
highlight the effectiveness of BERT in multi-label classification tasks while also emphasizing the 
need for further refinements in certain categories to enhance recall and balance precision-recall 
trade-offs. However, these results indicate that this rubric is appropriate for evaluating student 
explanations on all major accuracy categories (categories 14-16) and potentially inaccuracy 
categories as well. 
Table 7: Human-machine agreement for the ML training stage of models scoring 

 
 
Category 

Validation (Testing Stage) 

Accuracy (%) Precision (%) Recall (%) F1 score (%) 

C14 91.70 85.29 89.23 87.21 

Category Percent of positive cases (%) 

1 33.99 
2 16.43 
3 11.89 
4 19.57 
5 21.3 
6 23.29 
7 11.81 

8 8.92 

9 17.84 

10 20.48 

11 8.92 
12 8.51 
13 8.9 
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C15 97.56 91.30 87.50 89.36 

C16 92.19 77.27 85.00 80.95 

C17 93.65 57.14 28.57 38.09 

C18 96.58 100 36.36 53.33 

C19 93.65 50.00 38.46 43.47 

C20 94.63 87.75 89.58 88.65 

C21 90.73 75.00 58.06 65.45 

 
Table 8. Percent of positive cases for each scoring category for explanation modality. 
Assessme
nt of 
imbalanc
e 

Catego
ry 14 

Categ
ory 15 

Categor
y 16 

Catego
ry 17 

Categor
y 18 

Category 
19 

Categor
y 20 

Category 
21 

Percent 
positive 
cases 
n=1066 

33.3 10.7 19.2 8.4 5.0 7.2 23.8 12.4 
 

 
Examples of Output and Potential Feedback 

We further demonstrate some examples of scored models and accompanying explanations 
and discuss potential feedback that can be tailored to the specific responses based on the scoring 
and corresponding LP level assignment. 

For example, figure 2 shows the model that is consistent with the highest possible LP 
level for this item- level 2, while the explanation provides a level 1 response. Specifically, notice 
that the model shows all the necessary components, including all the charges and repulsive forces 
on all parts on the electroscope in both scenarios, which is consistent with LP level 2 for the 
modeling modality. On the other hand, the explanation modality only reflects students 
recognizing that there is more charge in scenario B compared to A without relating it to 
magnitude of associated electric force, which is needed to attain LP level 2 on this modality. 
Therefore, the proposed feedback statement recognizes the accuracy of the model (red text), 
while providing feedback for explanation (blue text) to help the student attain level 2 on this  
modality by relating the amount of charge to the magnitude of electric force to explain the 
phenomenon in question. 

Further, figure 3 shows sample response consistent with LP level 1 on both modalities 
with no inaccuracies. Notice that the model misses charge components on the sphere and hook in 
both scenarios, which reflects level 1 on modeling modality. Further, the accompanying 
explanation does not relate the difference in the amount of charge to the difference in magnitude 
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of the associated repulsive force- similar to the previous example. Possible feedback addresses 
both of these shortcomings to help the student attain a higher level for both modalities. 
Figure 2. Sample LP level 2 response and potential feedback. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Sample LP level 3 response and potential feedback. 
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Finally, Figure 4 shows an example of a model reflecting level 0 of the LP on both modalities. 
Specifically, the model shows both types of charges on the electroscope, which is consistent with 
inaccuracy category 11, and no accompanying explanation. Notice that the feedback for the 
modeling modality focuses on recognizing that students showed charges on their model, and 
pointing out that both types of charges were shown. The feedback also pushes students to think 
about how charges cause differences in observations and show their understanding on both 
modeling and explanation modalities. 
 These few examples demonstrate how the rubric and the LP-guided approach discussed 
in this study can be used to tailor feedback to a wide range of student responses reflecting 
diverse ways of thinking and sophistication. We used this approach to design feedback 
statements for a wide range of models and accompanying explanations and plan to pilot them. 
Figure 4. Sample LP level 0 response containing inaccuracy in modeling and potential feedback. 

 
 

Discussion 
 It is challenging to train AI algorithms to recognize complex reasoning such as that 
reflected in students’ scientific models and explanations. This is because ML algorithms should 
be trained to go beyond simple features of a given image to recognize specific aspects that are 
important for the practice of modeling focusing on evaluating causal aspects of scientific models 
explaining phenomena. Similarly, ML models should be trained to recognize relevant 
components of scientific explanations. This is especially challenging when we aim to provide 
cognitively appropriate feedback tailored to the diversity of student thinking reflected in these 
modalities. The reason is that often scientific models at various LP levels might look very similar 
(compare level 2 and level 1 models in figures 2 and 3 respectively), but in reality represent 
qualitatively different levels of understanding. Furthermore, diversity of student ways of 
modeling and explaining at various levels of sophistication is often integrated with various 
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inaccurate and /or incomplete ways of thinking  (e.g., inaccurate model shown in Figure 4). If 
ML algorithms are  not able to accurately capture these important differences, then we will not 
be able to design accurate and targeted LP-aligned feedback, which in turn defies the purpose of 
using ML techniques  to solve one of the central current problems in education- personalizing 
education to individual learners’ needs. It is therefore important to design approaches that 
leverage everything we know about how proficiency in a given construct develops, which is 
reflected in the LP-based vision, when designing AI-based methods for evaluating student 
learning. The current study demonstrates how an LP can be used to guide ML training to 
evaluate student thinking on two modalities: models and explanations, both of which are crucial 
for supporting deep science understanding. 

The proposed LP-guided ML training process yields results that are meaningful with 
respect to LP levels, provide high human-machine agreement on most cases, and allow 
meaningfully capture the diversity of student thinking on both modalities and tailor formative 
feedback to individual student needs.  

In cases when human-machine agreement is not sufficient, future work will focus on 
providing more examples for ML training to ensure that ML algorithms have sufficient number 
of pre-scored responses to learn to recognize specific features in student models and 
explanations. Notice that insufficient agreement was mostly demonstrated for categories that 
capture inaccuracies (categories 11-13 for modeling and categories 19 and 21 for explanations). 
These categories often don’t have a sufficient number of positive cases, or represent highly 
diverse ways of ways which could be characterized in those categories. For example, in the case 
of modeling modality, categories with the lowest F1 score- categories 11 and 12, both of which 
have few responses in the dataset as shown in Table 6. Further, category 12 is very diverse 
because a similar amount of charge can be shown on a wide range of electroscope parts, in both 
scenarios, all of which would classify the model in this category. Similarly,  category 11 reflects 
models that show both types of charges, which can also be shown on different parts of the 
electroscope and in both scenarios, making a range of possible responses highly diverse. This is 
in contrast to scoring a “1” in categories 1-10, where there is basically only one possible way of 
attaining that score. Therefore, it is possible that lower human-machine agreement on these 
categories could be due to the fact that these categories offer a wider range of possible answers 
that could be classified in that category and smaller number of available responses that don’t 
necessarily reflect this diversity. However, additional empirical studies are needed to further 
confirm this suggestion. 
Study’s Significance 

This process of LP-guided AI algorithm training described here (Figure 1) represents a 
transparent and principle-based approach for designing LP-aligned, personalized feedback for 
any constructed response assessments (including scientific models, text-based explanations etc.). 
Defining analytic categories in this manner allows for easy identification of human-machine 
misscores by providing a straightforward way to pinpoint specific analytic rubric categories that 
were misscored. This property has the potential to improve overall validity of the associated 
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AI-based scoring system. Importantly, this LP-driven approach to AI training allows us to go 
beyond using AI to perform specific tasks (e.g., scoring isolated assessment items) and train AI 
to guide the learning process in ways that are grounded in relevant cognition theories and foster 
multimodal understanding beyond specific tasks and modalities. 
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