Improving machine-learning scoring models of written student
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WHY IS THIS IMPORTANT? EXPERIMENTAL METHODS

* Constructed response questions reveals student thinking Al e e TR
better than traditional multiple-choice
* Professors are limited by large class-size and high time
, , Complete CR Data Set
requirement for grading N =9170
 Computer Scoring Models (CSMs) automate scoring,
making constructed response more accessible.
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RESEARCH PROBLEM

Experimental Data Set
0.6-0.7 (n=580)

* Creating CSMs Is time consuming.
* Require Input of human assigned scores and each model
has unique issues

* Little is known about how to improve CSMs for text l

Original CSM
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Model
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assessments
* Currently new responses are added until the model works.
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Add 50 responses to Original
based on predictive accuracies

RESEARCH QUESTION

Accuracy of Original CSM
&

Test CSMs with Complete Data Set

* Can predictive accuracy scores be used to efficiently Pradictive Acciiracias
improve CSM performance? We hypothesized that using
subsets of responses with different predictive accuracies Figure 1: Experimental Design.
would lead to different CSM performance.

PRELIMINARY FINDINGS

CONCLUSIONS
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